CSPs USE CHALLENGES

- Maturity
 - o Cost: SLICC vs. JACS-Pak
 - o Licensees with different materials, processes
 - o Materials/Deign
 - Continuos changes
- Availability
 - o ICs in CSP format
- Reliability
 - o Some data screening for packages
 - o Some assembly reliability
- Supplier desire on reliability
 - o Trust what they say!

Rega Bhaffarian

CSPs RELIABILITY -1

- Applications
 - o Low, Medium, and High I/Os
- Testing Modules
 - o Daisy chain packages less critical
 - O Test and burn-in socket availability for active die
- Design Guidelines CSP
 - o Not available
- Standards
 - o Construction, Pitches, Solder balls

Aga Bhaffarian

CSPs RELIABILITY -2

• PWB Materials

- O Low to medium I/Os
 - Standard
- o High I/O
 - ☐ Microvia (build up) technology

• Process Requirements

- o Experience of using CSPs in SMT line
- o Mixed technology
 - nass, Cleaning, etc.
- o Underfill, etc.

Roga Yhaffarian

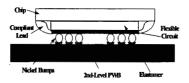
CSPs RELIABILITY -3

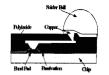
• Reliability

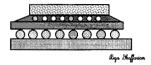
- o Aerospace
 - Stringent requirements and long time
- o Commercial
 - Less stringent and short time

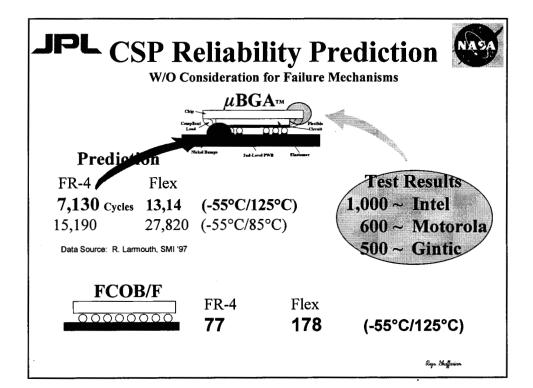
• Inspection

- o Hidden solders not inspectable
- Rework
 - o Miniature package
 - Improved tool or modified procedures
 - o Underfill


Rega Bhaffarian


CSP Board Reliability Types


- CTE Absorbed CSP
 - o Use of TAB
 - o Solder joint low strain
 - n No underfill
 - o Reliability limit
 - TAB, material, etc. Data from manufacturer & user



- Extreme CTE Mismatch
 - o Wafer level
 - O Same as flip chip with slight improvement
 - underfill requirement

- Ceramic package with rigid interposer
 - o Non-wafer level
 - Improved reliability to CBGA version

NASA Gode Q, AE

JPL SMT Program

BGA CONSORTIUM

'95-'98

DEST CONSORTIUM ASSEQUED

CSE CONSORTIUM

Regn Shaffaria

JPL

Program Objectives

Demonstrate controls, quality, and reliability of Microtype Ball Grid Array interconnects

R

Support the development of industrial infrastructure in product assurance

- Inspection methodology development, especially for assembly level
- Optimal package type configuration
- Reliability characterization
 - o Package type, I/O, and Environmental dependency
- Reworking techniques

Rega Haffarian

Conclusions-BGA

- CBGA 625 I/Os were first to fail under different cycling ranges than
 - o CBGA 361
 - SBGA 560, SBGA 352, OMPAC 352, and PBGA 256 when cycled to different temperature ranges
- PBGAs 313 I/O, depopulated full arrays, were first among the PBGAs to fail
- SBGA 352 with no solder balls under the die showed much higher cycles to failure than the PBGA 313

Roya Hallaria

JPL

Conclusions-CSP

- CSPs alignment characteristics
 - O Depend on package type, ball material, weight of package
 - o 30 trial assemblies of 46 I/O, no defect
- Mixed Technology
 - O Solder volume not optimum for leadless the most needed
- Trial TV Cycling Results
 - o Low I/O wafer had poor quality
 - o Double sided leadless was first to failure

Rega Haffarian

Euture Activities

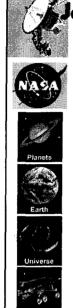
- Package aging test results
- Complete 1 50 additional TVs with different PWB surface finishes
- Extensive thermal and mechanical evaluation of assemblies
- CSP Consortium- Mixed technology & active die including CSP, flip chip, BGA
- Guidelines documents
 - o for BGA: http://www.ITRI.org

Rega Yhaffarian

Acknowledgments

NASA, Code Q, AE AIP RTOPs

(Advanced Interconnect Program)


Also, in-kind contributions and cooperative efforts of

Consortium team members and others

Rega Shaffarian

let Propulsion Laboratory

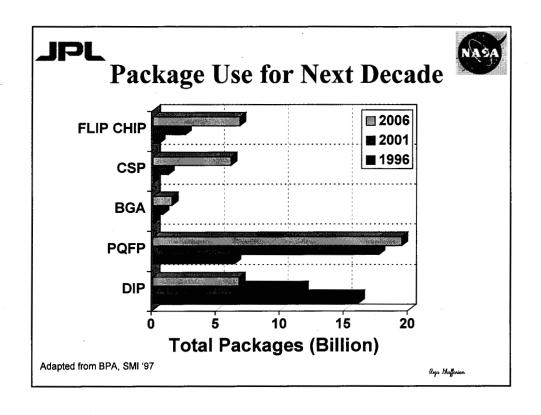
National Aeronautics & Space Administration California Institute of Technology

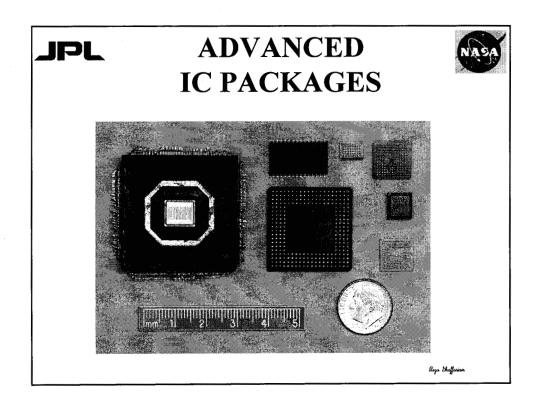
Assessment of Strengths & Weaknesses for Major IC Packages

by

Reza Ghaffarian, Ph.D.

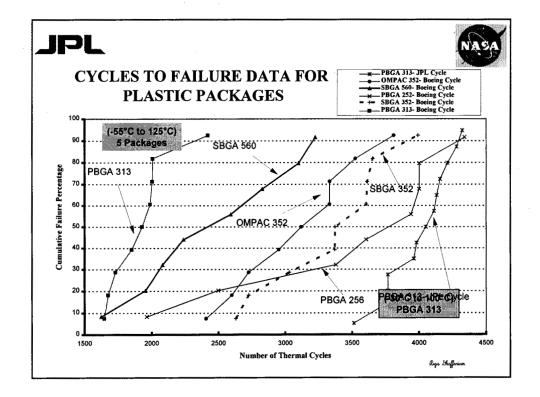
Jet Propulsion Laboratory (818) 354-2059 Reza.Ghaffarian@JPL.NASA.Gov


JPL


Outline

- Package Miniaturization Trends
- BGA vs. QFP
- CSP
 - o CSP vs. Flip Chip
 - o Grid CSP vs. leads/no leads
 - o Implementation challenges
- Thermal Cycling Fatigue
 - o Optimum CTE mismatch
 - o Reliability of BGA vs. QFP
 - o Reliability of CSPs
- Conclusions

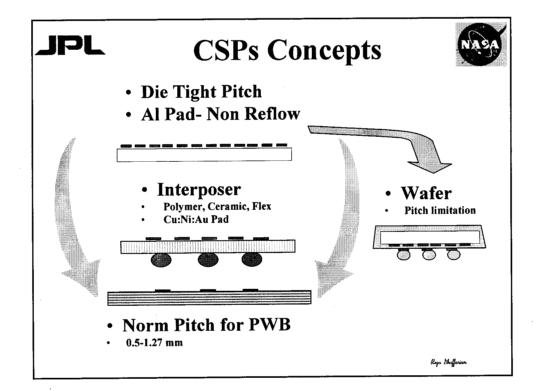
Rega Haffarian



BGA vs QFP

- Advantages
 - o Capable of high pin counts
 - o Manufacturing robustness
 - o Higher package densities
 - o Faster circuitry speed than QFP
 - o Better heat dissipation
- Challenges
 - o Inspection
 - o Multiple processes and double sided assemblies
 - O Routing for high pin count
 - o Rework, especially individual balls

Rega Bhaffarian

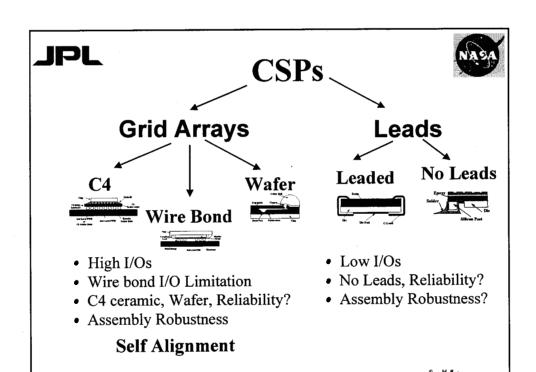


JPL Chip Scale Package Definition

- Near bare die size
 - o 1.2 of die perimeter or 1.5 of area
- Industry definition!
 - O Any package with pitch lower than previous version!
- Package purposes
 - o Balls/leads compatibility with the PWB reflow
 - -Aluminum pads on die are not reflow compatible
 - O Die tight pitch redistribution to the PWB norm
 - O Die protection from physical and alpha radiation
 - o Thermal dissipation path and ease of testability

Rega Bhaffaria

Chip Scale Package


Pros

- Near chip size
- Testability for KGD (known Good Die)
- · Ease of package handling
- Robust assembly process
 - o (Grid array version)
- Die shrink or expand
- Standards
- Infrastructure
- Rework

Cons

- Limited package/assembly data availability
- Moisture sensitivity
- Thermal management
 - o High I/Os
- Electrical performance
- Standards
- Routability
 - o Microvia PWB for high I/Os
- Underfill?
- · Reliability?
- Infrastructure?

Rega Bhaffarian

